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Abstract

The method of harmonic balance is applied to non-linear jerk equations, which involve the third order
time-derivative. For many types of cubic non-linearities, the method yields good estimates of the period and
displacement amplitude of oscillations for a range of values of initial velocity amplitude when compared
with numerical solutions. Some limitations, notably the restriction to zero initial acceleration, as well as
implications and possible extensions are discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The method of harmonic balance (HB), as described for example in the book by Mickens [1] for
second order non-linear oscillators, can be very successful in predicting the oscillation frequency
in terms of the amplitude of periodic solutions to non-linear ‘‘acceleration’’ equations of the form
.x ¼ f ðx; ’xÞ: In its simplest form, the dependent variable is assumed to be a harmonic,
cosinusoidal, function of angular frequency� time, and powers and products of trigonometric
functions arising from substitution into the differential equation are re-expressed in terms of
linear combinations of multiple-angle functions. Then higher-multiple functions are discarded,
and coefficients of the lowest order terms are matched (‘‘balanced’’).

Interest in ‘‘jerk’’ equations

.’x ¼ Jðx; ’x; .xÞ ð1:1Þ

involving the third temporal derivative of displacement (which might also be termed ‘‘tricelera-
tion’’), has recently been rekindled [2]. As well as originally being of some interest in mechanics (see
e.g., Refs. [3,4]), non-linear jerk equations are finding increasing importance in the study of chaos
(see the article by von Baeyer [5], and the recent paper by Sprott and Linz [6] and references therein).
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Many third order non-linear systems (three simultaneous first order non-linear differential
equations), both mathematically and physically motivated, such as the now-classical R.ossler system
[7], may be recast into a single non-linear third order differential (jerk) equation involving only one
of the dependent variables by suitable elimination [2,8]. Some early investigations into non-linear
jerk equations (although not termed as such) include oscillations in a non-linear vacuum tube circuit
[9], and third order mechanical oscillators [10–12]. Other physical situations in which non-linear
jerk-type equations have been investigated, with more emphasis on chaotic solutions (called
aperiodic in earlier works), include a thermo-mechanical oscillator model with thermal dissipation
[13,14], fluid dynamical convection [15], and stellar ionization zone oscillations [16]. Jerk equations,
though not nearly as common as acceleration (or force) equations .x ¼ f ðx; ’xÞ; are therefore of direct
physical interest. Moreover, simple forms of the jerk function J which lead to perhaps the simplest
manifestation of chaos have been found by Sprott [17].

This paper sets out to investigate not chaotic solutions to jerk equations (as many of the above
references do), but the analytical approximations, via the method of HB, to periodic solutions to
non-linear jerk equations in appropriate parameter regions where these exist. Such solutions do
not appear to have been dealt with by other authors before. At first sight, difficulties seem
apparent in this approach. First of all, a couple of facts contributing to the usefulness of the HB
method in investigating non-linear second order differential (acceleration) equations are
mentioned. (i) The linear d.e. .x ¼ �o2x has two independent periodic solutions fcos; singðotÞ:
(ii) Two initial conditions, on x and its derivative, are required, and it is always possible to have
only one of these, viz. cosðotÞ; non-zero at t ¼ 0:

On the other hand, for third order differential (jerk) equations, the situation is different. (i) The
linear d.e. .’x ¼ �o3x does not have any periodic solutions. (The special linear third order d.e.
.’x þ o2 ’x þ að .x þ o2xÞ ¼ 0 does possess the above two independent periodic trigonometric solutions,
but also (for aa0) may have a third, non-periodic, solution.) (ii) The third order d.e. requires three
initial conditions, for x and its first and second derivatives. Assuming an approximate solution to a
third order non-linear d.e. of the form xBcosðOtÞ; it is not possible to have only one non-zero initial
condition at t ¼ 0; because .xð0Þ is also required which moreover would involve the unknown O:

Difficulty (i) can be overcome by considering jerk equations whose linear term, if any, involves
only ’x: Difficulty (ii) may be addressed by using the Ansatz xB sinðOtÞ; so that only the initial
velocity is non-zero, with the initial displacement and also acceleration being zero. A consequent
restriction on the jerk equations amenable to HB using this approach is that (choosing time t ¼ 0
when x ¼ 0) only problems with zero initial acceleration can be considered. This has to be
appreciated from the outset. However, this situation of starting off with a constant velocity is a
feasible condition, depending on the actual physical meaning of the dependent variable x and
interpretation of the equation. For instance, the initial conditions ðxð0Þ ¼ 0; ’xð0Þa0; .xð0Þ ¼
0Þ are quite common in investigations of third order d.e.s, such as for example those
corresponding to physically implementable chaotic electrical circuits [18].

2. Suitable jerk functions

It is well known from the situation for second order d.e.s described in the first paragraph of the
Introduction that the HB method for finding periodic solutions works most successfully for
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equations which are parity- and time-reversal invariant, i.e., all terms have the same space-parity
(behaviour under x-� x) and time-parity (behaviour under t-� t). For d.e.s involving the jerk
.’x ¼ Jðx; ’x; .xÞ there should therefore only be odd powers of the x-type variables and only an odd
total number of time-derivatives in each term. Thus, equations such as Eq. (30) cited at the end of
a recent paper by Mickens [19], containing an x3 non-linearity, do not fall within the ambit of the
present paper. Further, the only linear term of the three possible arguments is ’x: Thus jerk
equations containing a term linear in .x; such as in references [9–16] discussed above, are not
considered here. There are 10 possible cubic-type terms (for simplicity in this paper, we do not go
higher than third order non-linearities), of which only the following four meet the requirements as
desired: ðIÞx2 ’x; ðIIÞ ’x3; ðIIIÞx ’x .x; ðIVÞ ’x .x2: The HB approach to such third order non-linear
differential equations does not appear to have been carried out before.

Interest here is in distinct jerk equations, not merely equivalent to or derived from second order
equations. Thus first of all the linear jerk equation .’x ¼ � ’x is simply the time-derivative of a linear
acceleration equation, in the form ðd=dtÞ½ .x
 ¼ ðd=dtÞ½�x
; and the third solution is a constant. The
third order equation corresponding to (I) is .’x ¼ �x2 ’x which is simply the time-derivative of an
acceleration equation, when written as ðd=dtÞ½ .x
 ¼ ðd=dtÞ½�ð1=3Þx3
; and so is not regarded as
distinctively jerk-like. The third order equation corresponding to (II) is .’x ¼ � ’x3; which is
equivalent to the second order system .y ¼ �y3 with y ¼ ’x: (This equation, termed the
‘‘velocillator’’, was analyzed in some detail in Ref. [20].) Similar statements may be made
concerning the preceding two non-linear d.e.s if a linear term involving ’x ¼ ðd=dtÞðxÞ ¼ y is
added. The other two allowed non-linear forms (III) and (IV) listed in the preceding paragraph
involve the higher, second order, derivative .x; and will be considered later.

3. General non-linear jerk functions

The most general jerk function which is invariant under time-reversal and space-reversal and
which has only cubic non-linearities as specified in Section 2 above may be written as

.’x ¼ �g ’x � a ’x3 � bx2 ’x þ dx ’x .x � e ’x .x2; ð3:1Þ

where the parameters g; a; b; d and e are constants (and the signs have been chosen to most
naturally suit the HB procedures). By rescaling x and/or t; any one or two of these parameters
(except a and d simultaneously) may be set to unity to obtain standard equations with fewer
control parameters suitable for more extensive study. (If the behaviour as the coefficient of a
particular term becomes very small is to be investigated, that parameter should not of course be
thus ‘‘normalized’’.)

As mentioned above, this paper is not concerned with jerk equations which may simply be
recast into a second order equation for the variable y ¼ ’x; so at least one of b; d; e should be non-
zero. Furthermore, as also mentioned in Section 2 above, we are not here interested in jerk
equations which are simply the time-derivative of an acceleration equation. Such equations, which
may be termed ‘‘Newtonian jerk’’ (cf. Ref. [8,21]), have the form .’x ¼ ð@f =@xÞ ’x þ ð@f =@ ’xÞ .x where
.x ¼ f ðx; ’xÞ can be considered as an expression of Newton’s Second Law for f ; the force function
per unit mass. Thus, if e ¼ 0; we would require da� 2a (since ’x3 þ 2x ’x .x ¼ ðd=dtÞ½x ’x2
).
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Substitution, according to the Introduction, of xðtÞ ¼ ðB=OÞsinðOtÞ into Eq. (3.1), and use of
the HB procedure, leads, from the coefficient of cosðOtÞ; to

½4� eB2
O4 � ½4gþ ð3aþ dÞB2
O2 � bB2 ¼ 0: ð3:2Þ

This quadratic equation in O2 may be solved to give positive O in terms of the initial velocity
amplitude B as the HB approximation to the angular frequency and thence the period. If also the
coefficient of the cosð3OtÞ term in the HB procedure is zero, viz.

eO4 þ ðd� aÞO2 þ b ¼ 0; ð3:3Þ

then the above sine solution for xðtÞ is will be exact; but this will only sometimes be possible.
The general equation (3.1) and the approximate frequency equation (3.2) involving three

essential control parameters and one amplitude parameter are not easily analyzable in generality
as regards their key features, and will not as such be pursued further here. Rather, several special
cases of Eq. (3.1) will be dealt with in some explicit detail in succeeding Sections.

4. Jerk function containing velocity-cubed and velocity times displacement-squared

We now note that the simplest, parity- and time-reversal invariant, distinctive jerk equation with
polynomial non-linearities and lowest time-derivatives will involve a linear combination of the cubic
forms (I) and (II) above. This was analyzed as a paradigm in Ref. [20], where it was shown that all of
its solutions are periodic and phase plane curves (for initial condition ’xð0Þ ¼ 0) were found; that work
was not concerned with the actual values of the periods. In this section, as a first detailed application
of the HB method to a jerk equation, approximations to the periods of this paradigm equation are
derived, and compared with exact results found by numerical integration of the third order d.e.

The equation to be investigated is

.’x ¼ � ’xð ’x2 þ x2Þ: ð4:1Þ

Without loss of generality, given that both terms appear on the right-hand side, the coefficients
of both these terms can always be set to 1 by appropriate rescalings of displacement x and time t:
The HB approximation for such equations is

x ¼ ðB=OÞsinðOtÞ;with xð0Þ ¼ 0; ð4:2a;bÞ

so

’x ¼ B cosðOtÞ;with ’xð0Þ ¼ B; ð4:3a;bÞ

.x ¼ �OB sinðOtÞ;with .xð0Þ ¼ 0; ð4:4a;bÞ

where O is the angular frequency. Then the period is given by

T ¼ 2p=O ð4:5Þ

and the (approximate) displacement amplitude in Eq. (4.2a) is given by

A ¼ B=O: ð4:6Þ

Note that the above choice of the form (4.2a) of x allows for the non-zero initial condition, for
’x; to involve the independent velocity-amplitude constant B; which may in principle be assigned
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arbitrarily. The forms for x and .x involve the unknown frequency parameter O; but this does not
appear in their initial conditions because they are zero. As mentioned in the Introduction, for the
HB method to be applicable as formulated here, the initial acceleration, as well as the initial
displacement, should be zero.

Substitution into Eq. (4.1), and manipulation using trigonometric identities, yields, for Ba0;

O2 cosðOtÞ ¼ ð1=4ÞðB2=O2Þð3O2 þ 1ÞcosðOtÞ

þ ð1=4ÞðB2=O2ÞðO2 � 1Þcosð3OtÞ: ð4:7Þ

It is immediately apparent that if B ¼ 1 and O ¼ 1 then Eq. (4.7) is satisfied exactly: x ¼ sinðtÞ
is an exact solution of Eq. (4.1), as can easily be verified by direct substitution. If Ba1; then the
HB approximation is invoked: the higher harmonic in Eq. (4.7) is ignored and the coefficients of
cosðOtÞ are equated, yielding B2 ¼ 4O4=ð3O2 þ 1Þ and thence the approximate expression for
angular frequency O (>0) in terms of velocity amplitude B:

O ¼ ½1=ð2
ffiffiffi
2

p
Þ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9B4 þ 16B2

pq
: ð4:8Þ

It can be seen that, in this approximation, as B-0; O-0; i.e., T-N; and ABO2OB-0: As
B-N; T-0; i.e., O-N; and A-2=O3 ¼ 1:15470054:

The numerical values for period T of Eq. (4.5) and also the displacement amplitude A of
Eq. (4.6) resulting from the approximate expression (4.8), for a range of values of initial velocity
amplitude B; are compared in Table 1 with the exact numerical values obtained by solving the
third order differential Eq. (4.1) with initial conditions (4.2b), (4.3b), (4.4b) using the
computational software ODE Workbench [22]. For these, as for subsequent, computations, it
was checked that the phase plane ð ’x vs: xÞ orbits did indeed close. Furthermore, since these are
third order d.e.s, it was also checked, here and subsequently, that the orbits in another phase
plane ð ’x vs: .xÞ were also closed and resulted in the same computed period. (Whilst orbits in the
first case progressed clockwise, those in the second case progressed anti-clockwise. Note that in
the present instance, the initial conditions in both phase planes are the same.)
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Table 1

Values for period T and displacement amplitude A of Eq. (4.1) for initial conditions (4.2b, 4.3b, 4.4b) as given by

formulae (4.5) and (4.6) with harmonic balance (harm. bal.) Eq. (4.8), for a range of values of initial velocity amplitude

B; together with exact values obtained by numerical computation. (For the B ¼ 1 case, harmonic balance is exact.)

B T A

Harm. bal. Exact Harm. bal. Exact

0.1 27.065998 25.359725 0.430769 0.468121

0.2 18.438632 17.495410 0.586920 0.627919

0.5 10.461083 10.210761 0.832466 0.860011

1 2p ¼ 6:283185307 6.283185307 1 1.000000000

2 3.457326 3.508793 1.100501 1.074352

5 1.438527 1.468638 1.144743 1.104257

10 0.723920 0.739762 1.152154 1.109078

20 0.362559 0.370580 1.154060 1.110308
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It may be mentioned that for Eq. (4.1) the exact phase plane orbits were given in Ref. [20]. For
the present initial conditions (4.2b), (4.3b), (4.4b) they are given by

’x2 þ x2 ¼ 1þ ðB2 � 1Þcosð
ffiffiffi
2

p
xÞ ð4:9Þ

and they form a set of nested, closed curves. Successive differentiations of Eq. (4.9) show that the
effective potential there has a minimum at x ¼ 0; generating a stable centre. The associated closed
paths (4.9) therefore are Poincare stable orbits (see, for example, the text-book by Jordan and
Smith [23, p. 280].)

The exact displacement amplitude defined as the value of x when ’x ¼ 0 satisfies the equation,
following from Eq. (4.9):

A2 � 1 þ ð1 � B2Þcosð
ffiffiffi
2

p
AÞ ¼ 0; ð4:10Þ

so for given B the exact value for A can be found by numerical solution of this algebraic equation.
The results agree with the results obtained by numerical solution of the differential equation, thus
checking the accuracy of the ODE software [22].

The accuracy of the HB approximation as exhibited in Table 1 is very good throughout the
wide range of B; being better than about 7% for the period. (The ‘‘exact’’ results for the B ¼ 1
case corresponding to the exact solution x ¼ sinðtÞ with T ¼ 2p and A ¼ 1 are quoted to more
significant figures to further confirm the accuracy of the numerical software.) The accuracy is
better for B values near B ¼ 1; and worsens a little as B departs from this value. The reason for
this may be understood by making the next HB approximation, as outlined in the following sub-
section.

4.1. Harmonic-balance correction

The correction to the simple HB approximation is obtained in a way similar to that for the more
usual second order non-linear oscillator equations [1] by adding a third-harmonic term, for
convenience in the present case as follows:

x ¼ ðB=OÞsinðOtÞ þ ðb=ð3OÞÞsinð3OtÞ; ð4:11Þ

so that the initial velocity is now given by ’xð0Þ ¼ B þ b: Two equations are now obtained by
equating the coefficients of cosðOtÞ and of cosð3OtÞ: After some manipulation there results the
ratio

b=B ¼ ð1=7ÞðO2 � 1Þ=ð3O2 þ 1Þ: ð4:12Þ

(This vanishes when O ¼ 1; corresponding to the exact solution where b ¼ 0:) Since the right
side of Eq. (4.12) is an increasing function of O2; it follows that

�1=21ob=ð3BÞo1=63 for 0oO2oN; ð4:13Þ

so the ratio of coefficients in expression (4.11) for x has modulus always less than 1/21, i.e., the
amplitude correction is less than 5%, which is small as desired. Furthermore, from Eq. (4.13),
better relative accuracy is expected for O large than for small, i.e., for T small rather than large.
This is borne out in Table 1.
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4.2. Jerk function containing velocity-cubed, velocity times displacement-squared, and velocity

This section investigates a slightly more complicated case which extends the jerk function of the
above section by incorporating a linear, velocity, term. The equation is first presented with general
coefficients

.’x ¼ � ’xða ’x2 þ bx2Þ � g ’x: ð4:14Þ

Since the b ¼ 0 case of this equation is just a second order d.e. for the dependent variable y ¼ ’x;
and the a ¼ 0 case is just the time-derivative of the acceleration equation .x ¼ �bx3=3� gx; both
the cubic terms are needed for a non-trivial jerk equation. By rescaling, both coefficients a and b
may be set equal to unity as before, and g remains the single essential control parameter.

Two identities involving jerk were introduced in Ref. [20]

.’x �
1

2
’x

d2

dx2
ð ’x2Þ ð4:15aÞ

� ’x
d .x

dx
ð4:15bÞ

Use of the first identity (4.15a) enables one to find the explicit phase plane curve equations for
the d.e. (4.14) (with a ¼ b ¼ 1), for the initial conditions of this paper

’x2 þ x2 ¼ 1 � gþ ðB2 � 1þ gÞcosð
ffiffiffi
2

p
xÞ: ð4:16Þ

These are again closed, nested curves, with the g term in Eq. (4.14) just modifying constants in
Eq. (4.16); this may be compared with Eq. (4.9) above for the case g ¼ 0; so the orbits are again
stable (cf. Section 4. above).

The HB approach via Eqs. (4.2)–(4.4) is now applied to the rescaled jerk equation

.’x ¼ � ’xð ’x2 þ x2Þ � g ’x: ð4:17Þ

The coefficient of cosðOtÞ yields the relation

B2 ¼ 4O2ðO2 � gÞ=ð3O2 þ 1Þ: ð4:18Þ

From the coefficient of the cosð3OtÞ term, it is found that the solution is exact if O ¼ 1; i.e.,
B ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
: Thus no exact sine solution is possible if g > 1: If Ba

ffiffiffiffiffiffiffiffiffiffiffi
1 � g

p
; then Eq. (4.18) may be

solved to find the approximate HB expression for the angular frequency in terms of the initial
velocity amplitude:

O ¼ ½1=ð2
ffiffiffi
2

p
Þ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ 4gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3B2 þ 4gÞ2 þ 16B2

qr
: ð4:19Þ

Two examples are considered, first for parameter value g ¼ 1=2; for which the possibility of an
exact solution exists for suitable choice of B (=1/O2 in this case), and secondly for g ¼ 2; for
which it was found above that no exact sinusoidal solution exists. Some representative results are
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presented in Tables 2(a) and (b). The HB results for period T and displacement amplitude A are
remarkably accurate, within a couple of per cent, even in case (b) where no exact sine solution is
possible.

5. Jerk functions containing the acceleration

The functions (III) and (IV) listed in Section 2 above involve the second order time-derivative,
as distinct from the functions dealt with in Section 4. They will be now be dealt with in turn.

5.1. Jerk function containing displacement times velocity times acceleration, and velocity

For the function (III), after rescaling of the x variable, the corresponding jerk equation would
take the form

.’x ¼ x ’x .x: ð5:1Þ

The HB approximation would give O ¼ B=2 so T ¼ 4p=B and A ¼ 2: However, the solution
’x ¼ B ¼ constant to Eq. (5.1) satisfies the initial conditions (4.3b), (4.4b), and this is the solution
obtained by numerical integration. The solution is not periodic, and the HB approach is spurious
in this instance. From the identity (4.15b) together with .x ¼ ðd=dxÞð ’x2=2Þ follow the phase plane
equations

’x2 þ c1

Z x

0

exp
1

2
X 2

� �
dX ¼ B2; ð5:2Þ
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Table 2

Values for period T and displacement amplitude A of Eq. (4.17) for initial conditions (4.2b, 4.3b, 4.4b) as given by

formulae (4.5) and (4.6) with harmonic balance (harm. bal.) Eq. (4.19), for a range of values of initial velocity amplitude

B; together with exact values obtained by numerical computation, for two values of the parameter g: (For the g ¼ 1=2
case with B ¼ 1=O2; harmonic balance is exact.)

B T A

Harm. bal. Exact Harm. bal. Exact

(a) g ¼ 1=2
0.5 7.165959 7.160833 0.570249 0.572279

1/O2 2p ¼ 6:283185307 6.283185307 1/O2=0.7071067812 0.7071067812

1 5.262752 5.276160 0.837593 0.831912

2 3.237910 3.276060 1.030659 1.006639

(b) g ¼ 2

0.5 4.221081 4.221545 0.335903 0.335066

1 3.729641 3.734078 0.593591 0.588522

2 2.757326 2.775201 0.877684 0.859563
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where c1 is some constant, satisfying the initial conditions xð0Þ ¼ 0; ’xð0Þ ¼ B: For c1 ¼ 0; the
above constant velocity solution is obtained. If c1a0; curves (5.2) are not closed.

To find an equation amenable to HB analysis, a term linear in the velocity is incorporated. The
resulting standardized jerk equation, after rescaling of both x and t; is therefore taken to be

.’x ¼ x ’x .x � ’x ð5:3Þ

(which is free of parameters). The phase plane curves for this equation may be written in
the form

’x2 þ c1

Z x

0

exp
1

2
X 2

� �
dX þ 2

Z x

0

exp
1

2
X 2

� � Z X

0

exp �
1

2
x2

� �
dx

� 	
dX ¼ B2: ð5:4Þ

HB now gives the approximate result

O ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4

p
ð5:5Þ

with period T and displacement amplitude A then given by Eqs. (4.5) and (4.6). (There is no exact
sinusoidal solution for any value of B:) Table 3 gives some results, compared with exact computed
results, for a range of values of B; over which the phase plane orbits form nested closed curves and
hence are again stable. Note that, in this case, as B-0; T-2p (corresponding to a small
amplitude linear oscillator), and this is reflected in the trend. The HB results are very good,
especially for the period, improving as B decreases.

To justify the approach and explain the good results for Bt1; the HB correction (4.11) may
here be inserted into Eq. (5.3). It is found that, to first order in b=B; this ratio is approximately
given by

b=BE1=½ð32=B2Þ � 7
: ð5:6Þ

If Bp1; the ratio of coefficients b=ð3BÞ in Eq. (4.11) for this equation is therefore less than
1/75E1.3% which is indeed small.
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Table 3

Values for period T and displacement amplitude A of Eq. (5.3) for initial conditions (4.2b, 4.3b, 4.4b) as given by

formulae (4.5) and (4.6) with harmonic balance (harm. bal.) Eq. (5.5), for a range of values of initial velocity amplitude

B; together with exact values obtained by numerical computation

B T A

Harm. bal. Exact Harm. bal. Exact

0.1 6.275346 6.275347 0.099875 0.099917

0.2 6.252003 6.252016 0.199007 0.199338

0.5 6.095585 6.096061 0.485071 0.489978

1 5.619852 5.626007 0.894427 0.927839

2 4.442883 4.491214 1.414214 1.580210

H.P.W. Gottlieb / Journal of Sound and Vibration 271 (2004) 671–683 679



5.2. Jerk function containing velocity times acceleration-squared, and velocity

For the final function (IV) of Section 2, after rescaling of the x variable, the corresponding jerk
equation may be taken to have the form

.’x ¼ � ’x .x2: ð5:7Þ

The HB approximation would actually give B ¼ 2; with no value for O: However, once again
the solution ’x ¼ B ¼ constant is a solution to Eq. (5.7), which satisfies the initial conditions
(4.3b), (4.4b), and this is again the solution obtained by numerical integration. The HB approach
is again spurious in this instance. From identity (4.15b) follow the phase plane equations

1
2 ’x

2 � ln½jx þ c1j
 ¼ c2; ð5:8Þ

where c1 and c2 are constants. These curves are not closed.
To find an equation amenable to HB analysis, a term linear in the velocity is again

incorporated. The resulting jerk equation is written in the form which for the present retains the
parameter g > 0:

.’x ¼ � ’x .x2 � g ’x: ð5:9Þ

The phase plane curves may be written in the form

1
2 ’x

2 � ln½jcosð
ffiffiffi
g

p
x þ C1Þj
 ¼ C2; ð5:10Þ

where C1 and C2 are constants.
HB gives the approximate equation

O ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð4 � B2Þ

q
ð5:11Þ

for Bo2: Results have been given so far with parameter g included because, for instance, the form
of Eq. (5.8) cannot immediately be deduced from Eq. (5.10) by letting g-0; although
compatibility can be achieved by a careful consideration of the relations between the constants
specified in the phase plane equations. (See Appendix A.)

Now the jerk equation may be brought into a standard form by also rescaling the time to give

.’x ¼ � ’x .x2 � ’x: ð5:12Þ

Expression (5.11) becomes

O ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� B2

p
ð5:13Þ

and the period T and the displacement amplitude A are then given by Eqs. (4.5) and (4.6). (Here
again there is no exact sinusoidal solution for any value of B:) Table 4 gives some results,
compared with exact computed results, for a range of values of B: Note that, as B-0; again
T-2p; and this is reflected in the trend. The HB results are very good, particularly for Bo1:
(Evidently B cannot get too large for approximation (5.13) to be relevant.)

It may be noted that the exact phase plane curves for the jerk Eq. (5.12), with the present initial
conditions, may be written as

1
2 ’x

2 þ loge½jsecðxÞj
 ¼
1
2
B2: ð5:14Þ
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For oscillations about x ¼ 0; the second term can be interpreted as a potential whose shape
guarantees stability of the orbits. Furthermore, in this case the exact displacement amplitude may
be found explicitly by the expression

A ¼ ar cosðexpð�B2=2ÞÞ: ð5:15Þ

This checks the ODE numerical solution results for A in Table 4.

6. Discussion

In this paper, parity- and time-reversal-invariant jerk equations with cubic non-linearities were
subjected to a HB analysis. The results for periods and displacement amplitudes for a number of
different types of appropriate equations were compared with the results of numerical computations
and found to be generally in good agreement over a range of the initial velocity amplitude values.
Evidently the work could be extended to higher order, in particular quintic, non-linearities.

Mixed-parity equations were avoided, as they are known to produce difficulties for the HB
method even for second order acceleration non-linear equations [24,25]. However, they may be
important, because the ‘‘simplest’’ chaotic third order d.e.s [17] involve only quadratic non-
linearities, such as x ’x; ’x2; or x2 (although the latter two have the opposite time-reversal behaviour).

The condition .x ¼ 0 utilized above, whilst not unusual, is certainly restrictive. This raises the
question as to whether some other set of periodic trial functions, rather than the two standard
trigonometric functions, may be more suitable for third order non-linear equations. For instance,
the three Jacobian elliptic functions sn, cn, dn [26] have found some successful applications for
second order non-linear d.e.s [27,28]. (In particular, their derivatives [26] involve the other two of
the trio, as compared with the other one for the pair sin, cos.)

Acknowledgements

The author thanks the Department of Mathematics at the University of Queensland for
hospitality during an Academic Studies Program visit there. Conversations with Drs. Tony
O’Connor and Peter Johnston at Griffith University were appreciated.

ARTICLE IN PRESS

Table 4

Values for period T and displacement amplitude A of Eq. (5.12) for initial conditions (4.2b, 4.3b, 4.4b) as given by

formulae (4.5) and (4.6) with harmonic balance (harm. bal.) Eq. (5.13), for a range of values of initial velocity amplitude

B; together with exact values obtained by numerical computation

B T A

Harm. bal. Exact Harm. bal. Exact

0.1 6.2753264 6.2753338 0.099875 0.099917

0.2 6.251690 6.251809 0.198997 0.199334

0.5 6.083668 6.088449 0.484123 0.489651

1 5.441398 5.527200 0.866025 0.919107

1.5 4.155936 4.690247 0.992157 1.240150
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Appendix A

The compatibility of Eq. (5.8) with Eq. (5.10) in the limit as the parameter g tends to zero is
detailed here. For g small, in Eq. (5.10)

cosð
ffiffiffi
g

p
x þ C1Þ ¼ cosð

ffiffiffi
g

p
xÞcosðC1Þ � sinð

ffiffiffi
g

p
xÞsinðC1Þ

¼ cosðC1Þ �
ffiffiffi
g

p
x sinðC1Þ þ OðgÞ

¼ �
ffiffiffi
g

p
sinðC1Þ x � ð1=

ffiffiffi
g

p
ÞcotðC1Þ


 �
þ OðgÞ;

‘lnjcosð
ffiffiffi
g

p
x þ C1ÞjBlnjx � ð1=

ffiffiffi
g

p
ÞcotðC1Þj þ lnj

ffiffiffi
g

p
sinðC1Þj:

Thus, as g-0;

c1B� ð1=
ffiffiffi
g

p
ÞcotðC1Þ

and

c2BC2 þ lnj
ffiffiffi
g

p
sinðC1Þj

in Eq. (5.8).
There is a g-dependent relationship between the constants. The singularity of the relationship is

not surprising since there is a transition from closed phase plane curves to open curves. This will
not be pursued further here, since Section 5.2 is essentially concerned with the periods of solutions
to the parameterless Eq. (5.12).
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